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Abstract— The angular momentum, angular velocity, Kelvin circulation, and vortex velocity vectors of a quantum Riemann rotor are 
proven to be  either (1) aligned with a principal axis or (2) lie in a principal plane of the inertia ellipsoid.  In the second case, the ratios of the 
components of the Kelvin circulation to the corresponding components of the angular momentum, and the ratios of the components of the 
angular velocity to those of the vortex velocity are analytic functions of the axes lengths. 

Index Terms— Astrophysics; Inglis's Cranking Formula; Kelvin Circulation Vectors; Riemann's Fluids Model; Riemmann's Theorem; 
Quantum Physics; Quantum Tilted Rotors; Vortex Velocity. 

——————————      —————————— 

1 INTRODUCTION                                                                     
classical Riemann rotor is a uniform density fluid with an 
ellipsoidal boundary and a velocity field that is a linear 
function of position. Riemann fluids model rotating stars 

and galaxies [1], [2], spinning gas clouds, [3] and rotating nu-
clei [4], [5]. Since linear velocity fields span the dynamical con-
tinuum from rigid rotation to irrotational flow, the Riemann 
model is suficiently general to model most collective rotational 
systems. The vector observables that measure the character of 
the rotation are the angular momentum L


 and the Kelvin 

circulation C
C

 [5], [6], [7], [8] the vector variables conjugate to 
L


 and C
C

 are the angular velocity ω  and the vortex velocity 
λ


. Tilted nuclear rotors for which ω  is not aligned with a 
principal axis are a topic of continuing interest [9], [10], [11], 
[12], [13], [14], [15], [16], [17], [18], [19], [20]. 

2 A QUANTUM THEORY OF RIEMANN'S ROTORS 
Recently, a quantum theory of Riemann rotors was formu-

lated by simultaneous angular and vortex cranking of the nu-
clear mean field Hamiltonian: 
 

 ( ) ( )0H H L Cωλ ω λ= − +CC

CC CC
  (1) 

 
where the mean field is approximated by the anistropic oscil-
lator potential: 
 

 ( )
2

2 2 2 2 2 2
0

1
2 2 x y zH m x y z

m
ω ω ω= − ∆ + + +


  (2) 

 
Inglis's cranking formula determines the collective energy 

of an A-nucleon system [21], [22]: 
 

 ( )
2

,
ph p h

p L C h
T

ω λ
ω λ
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−
=

−∑
CC CC

CC
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Self-consistency of the mean field with the density distribu-

tion requires that: 
 
 x x y y z zN N Nω ω ω= =   (4) 

where ( )1 2k kN n= +∑  denotes the total number of quan-

ta in the kth direction. The following semiclassical correspond-
ence theorem has been established: [23] At self-consistency, 
the “Inglis” collective energy, Eq. (3), equals the classical value 
for the kinetic energy of a Riemann rotor [1]: 
 

 ( ) ( )( )
3

2 2 2 20

1
, 4

4 i j k k i j k k
k

IT a a a aω λ ω λ ω λ
=

 = + + − ∑
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 (5) 

 
where i ; j ; k  are cyclic, 1a ; 2a ; 3a  are the axes lengths of 

the inertia ellipsoid in units of R , and the moment of inertia 
of a sphere of radius R  and total mass M mA=  is 

( ) 2
0 2 5I MR= . If the nuclear volume is set equal to the 

spherical value 34 3Rπ  , then the product of the dimension-

less axes lengths equals unity, 1 2 3 1a a a = . Note that if the 
vortex velocity vanishes, then the selfconsistent collective en-
ergy equals the rigid body energy, a well-known result [24]. In 
addition, the quantum expectations of the angular momentum 
and Kelvin circulation equal their classical Riemann rotor val-
ues [1]: 
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  (6) 

 
These expectations are given by derivatives of the kinetic 

energy with respect to the angular velocity and the vortex ve-
locity [25]: 
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The collective energy may be expressed as: 
 

 ( ) ( )1,
2

T L Cω λ ω λ= −
CCC  CCC

  (8) 

 
The energy in the rotating intrinsic frame for ordinary “In-

glis” cranking of the angular velocity vector is minimized with 
respect to orientation when the angular velocity and angular 
momentum vectors are parallel [11], [12], [20]. Because the 
vortex velocity is independent of the angular velocity, mini-

mization of the intrinsic energy ( ),E Hωλω λ = 

  with re-

spect to the orientation of λ


 also requires that the vortex ve-
locity and the Kelvin circulation vectors are parallel: 
 

 
0

0

L

C

ω

λ

× =

× =

CC

CC    (9) 

 
This is proven by computing the change in the intrinsic en-

ergy when the orientation of the vortex velocity is shifted in-

finitesimally from λ


 to n̂λ δλ λ ε λ+ = + ×
  

 where n̂  is an 
arbitrary unit vector: 
 

 
( ) ( ) ( ) ( )

( ) ( )

2

2
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ˆ

E E n C O
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ε λ ε
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�

 (10) 

 

Hence, at equilibrium, ( )ˆ 0n Cλ × =
CC

�  for all directions 

n̂ , or 0Cλ × =
CC

 . 

3 CONCLUSION 
Riemann [26] proved in 1860 that the classical rotors in 

equilibrium fall into three classes: 
 

1. Rigid rotors ( 0λ =


) which encompasses the Maclaurin 
spheroids and the Jacobi triaxial ellipsoids; 

2. S-type ellipsoids for which the directions of ω  and λ


 
are aligned with a principal axis; and 

3. Tilted ellipsoids for which the directions of ω  and λ


 
lie in a principal plane. 

 

The case where ω  and/or λ


 do not lie in a principal 
plane is specifically excluded. It is remarkable that Riemann's 
theorem is also true for quantum cranked Riemann rotors. To 
prove the theorem, substitute the explicit formulae for the ex-
pectations of the angular momentum and Kelvin circulation, 
Eq. (6), into the parallelism conditions, Eqs. (9). If the angular 

velocity vector ω  is neither aligned with a principal axis nor 
lies in a principal plane, then 1ω , 2ω , 3ω  are all nonzero and 
the parallelism conditions constitute a set of six simultaneous 
equations in the three unknown ratios, 1 1λ ω , 2 2λ ω  and 

3 3λ ω . It can be shown that only four of these equations are 
independent. Therefore, this simultaneous system is overde-
termined for the three unknown ratios. Since the assumption 
that all three components kω  are nonzero implies a contradic-
tion, one of the angular velocity components must vanish, say 

1ω . But, writing out the y-component of Eq. (9), 

3 1 2 3 3 10 2L a aω ω λ= = − , one concludes that 1λ  must also 

vanish. Hence, ω  and λ


 lie in a principal plane of the inertia 
ellipsoid. If 2ω  and 3ω  are both nonzero, then the parallelism 
conditions produce two independent equations in two un-
known ratios whose solution is: 
 

 

( )

( )

2 2 2
1 2 32

2 1 3

2 2 2
1 2 33

3 1 2

4

4

4

4

a a a q
a a

a a a q
a a

λ
ω

λ
ω

− + ±
=

− + ±
=

  (11) 

 
where: 
 

 ( )( ) ( )( )2 22 2 2
1 3 2 1 3 24 4q a a a a a a= − + − −   (12) 

 
If only one of the components of ω  is nonzero, then the 

angular velocity, vortex velocity, angular momentum, and 
Kelvin circulation vectors are all aligned with a single princi-
pal axis. The ratio λ ω  is undetermined for such an S-type 
ellipsoid. This completes the proof of Riemann's theorem. 

Since q   cannot be imaginary, there are only three types of 
tilted rotors. Choosing an ordering of the axes lengths in the 
principal plane, say 3 2a a≥ , yields the following: 
 

• Type I: 1 3 22a a a≥ + ; 

• Type II: 1 3 22a a a≤ −  and 2 1a a≤ ; 

• Type III: 1 3 22a a a≤ −  and 1 2a a≤   
 

Type II and Type III tilted rotors are ultradeformed pro-
late-like solutions for which the ratio of the longest to the 
shortest axis is at least three to one. Type I solutions are tilted 
oblate-like rotors; these have been studied in the classical mac-
roscopic approximation where the potential energy is a sum of 
the attractive surface energy plus the repulsive Coulomb po-
tential [5]. 
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